The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).
نویسندگان
چکیده
Epithelial sodium channel (ENaC) is a Na(+)-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na(+) absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin-angiotensin-aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.
منابع مشابه
Cartilage, bone and intermandibular connective tissue in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)
The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue th...
متن کاملDevelopment of the Axial Skeleton and Median Fin in the Australian Lungfish, Neoceratodus forsteri
New observations on the axial skeleton of the extant lungfish Neoceratodus forsteri (Dipnoi; Sarcopterygii) indicate that neural and haemal arch elements develop more independently than previously believed. For example, while the cartilaginous neural arches/spines begin development anteriorly, just behind the skull, the distal supraneurals first form separately in the posterior region of the ax...
متن کاملBrain – Endocast Relationship in the Australian Lungfish, Neoceratodus forsteri, Elucidated from Tomographic Data (Sarcopterygii: Dipnoi)
Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (μCT) and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoc...
متن کاملAnatomy and Histology of the Spiral Valve Intestine in Juvenile Australian Lungfish, Neoceratodus forsteri
The Australian lungfish, Neoceratodus forsteri, is the only vertebrate that possesses a complete spiral valve intestine with pre-pyloric coiling. This study describes the anatomy and histology of the spiral valve intestine in juvenile N. forsteri and compares it to a previous study of adult N. forsteri, thus providing a broader picture and better understanding of the intestine of the Australian...
متن کاملUltrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: evidence for conservation of composition for 300 million years.
The Australian lungfish Neoceratodus forsteri is the most primitive member of the lungfish family, with a surfactant lipid composition similar to the actinopterygiian fishes, which evolved 400 million years ago. We have analysed the proteins associated with surfactant isolated from lung lavage of this species, and used electron microscopy and immunohistochemistry to examine the surfactant struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 279 1748 شماره
صفحات -
تاریخ انتشار 2012